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A theoretical framework for dichroism and the
resonance-enhanced scattering of x-rays by magnetic
materials: II. Quadrupolar absorption events

Stephen W Lovesey
ISIS Facility, Rutherford Appleton Laboratory, Oxfordshire OX11 0QX, UK

Received 26 September 1996

Abstract. Previous work with the resonant scattering length that is based on an atomic model
and dipolar absorption events is extended to encompass quadrupolar absorption events. The
scattering length is the common element in calculations of the attenuation coefficient, dichroism
and the cross-sections for elastic and inelastic resonance-enhanced scattering of x-rays by
magnetic materials. Bothjj -coupling and Russell–Saunders coupling schemes for the atomic
electrons are utilized; included are tables of relevant Racah unit-tensor operators for the valence
shell fn.

1. Introduction

A wealth of experience in the interpretation of x-ray spectra for atoms has shown that a
useful approach is to classify events according to the power of the wave vector,q, of the
x-rays in the operator for their interaction with the atomic electrons. Usually referred to as a
multipole expansion of the interaction, the small parameter in the expansion is of the order
of qa0 wherea0 is the Bohr radius. The leading-order term is an interaction independent
of q; in this case, allowed events arise through non-zero matrix elements of the positions
of electrons within atoms and the events satisfy the electric dipole selection rules. At the
next level of approximation, events can take place by both electric and magnetic interaction
operators. The electric interaction operator in this case is proportional to the square of the
electron’s position, and the events satisfy the electric quadrupole selection rules.

The topic of interest here is the use of beams of x-rays to study magnetic properties of
materials, which has flourished in the past decade. (By and large, the recent experimental
work, which includes the exploitation of the dichroic effect and scattering methods, has been
underpinned by sources of x-rays provided by particle accelerators.) Lovesey and Collins
(1996) review a body of experimental and theoretical findings from this emerging field of
research.

In a previous paper (Lovesey and Balcar (1996), hereafter referred to as L & B) we
proposed a theoretical framework for absorption and the resonance-enhanced scattering of
x-rays by magnetic materials based on an atomic model of electric dipole (E1) events.
Here, we extend the framework to include electric quadrupole (E2) events. There is no
interference between the two types of event, so the scattering length for resonant processes
is just the sum of the contributions from dipole-allowed events, treated by L & B, and
quadrupole-allowed events. The expression for ouridealized resonant scattering length
appropriate for quadrupole-allowed events is found in section 3.
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Our formulation of attenuation and the resonance-enhanced scattering of x-rays via
quadrupole-allowed events is the same in all respects as the formulation of dipole-allowed
events reported by L & B. The reader is referred to L & B for a discussion of the basis of
the formulation, which entails the neglect of how energies of a subset of the intermediate
states in the scattering length depend on their magnetic quantum numbers. While the
spectrum of intermediate states available in dipole-allowed and quadrupole-allowed events
is the same, for a given configuration of the electrons, the selection rules that operate in
the matrix elements, between these states and the initial and final states of the equilibrium
configuration of the atom, mean that different parts of the whole spectrum are selected to
appear in the dipole-allowed and quadrupole-allowed resonant scattering lengths. It is to be
noted that summation over the quantum numbers of the subset of intermediate states which
feature in our formulation is achieved without approximation, except the one mentioned
above, and the selection rules for the absorption event (dipole or quadrupole) are fully
preserved.

L & B provide some tables of the relevant Racah unit-tensor operators for the valence
shell fn. Both jj -coupling and Russell–Saunders coupling schemes are utilized. More
entries are required for the quadrupole-allowed events, and the additional information is
included here. In one respect, at least, empirical data for quadrupole-allowed events are
more valuable than those for dipole-allowed events, simply because in the former there are
more contributions to the representation of the scattering length as a sum of Racah unit-tensor
operators. On the other hand, the high-order contributions to quadrupole-allowed events,
not present in dipole-allowed events, do not readily admit of simple, physical interpretations
in terms of basic equilibrium properties of the magnetic atoms.

The resonant scattering length including both dipole (E1) and quadrupole (E2)
interactions is developed in the next section. The contribution to the idealized scattering
length made by the quadrupole interaction is worked out in section 3 following the steps in
the formulation by L & B for the dipole interaction. Thereafter, the result for the quadrupole
interaction is examined for the special case of a saturated magnetic atom, which can sensibly
be used as a model of a magnetic material held at a very low temperature. In section 5, the
dichroic signal is calculated and compared with the corresponding value generated by the
dipole interaction. Scattering cross-sections, for Bragg diffraction and inelastic processes,
can be calculated with the aid of the results given in section 3 and formulae provided by
L & B. A knowledge of the scattering length, and relevant results given by Lovesey and
Collins (1996), also permit one to calculate the polarization of the beam of x-rays after
scattering; however, this topic is not taken up.

2. The resonant scattering length

The resonant contribution to the scattering length contains matrix elements ofε·J(q) where
J(q) is the spatial Fourier transform of the current operator andε andq are the polarization
vector and wave vector, respectively, of the primary beam of x-rays. Let|µ〉 and |η〉 be
eigenstates of the atom, with energiesEµ andEη, respectively, and define1 = Eη − Eµ.
To first order inq one finds for the matrix element ofε · J(q) the result

〈η|ε · J(q)|µ〉 = (im1/h̄)
∑

j

〈η|ε · Rj

(
1 + i

2
q · Rj

)
|µ〉

+ (i h̄/2)
∑

j

〈η|(q × ε) · (lj + 2sj )|µ〉. (2.1)
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In this expression,R, l ands are the position, orbital angular momentum and spin operators
of an electron, and the sum is taken over all electrons in the atom in question. The last term
in (2.1), which involves the magnetic moment of the electrons, is neglected in the present
calculation on the grounds that it is small relative to the first term. The latter is the sum of
a dipole (E1) and a quadrupole (E2) contribution.

The scattering length which is the common factor in calculations of the attenuation
coefficient and the cross-sections for the resonance-enhanced scattering of x-rays by atoms
at sites defined by{R0} is

f = −(re/m)
∑
R0

exp(ik · R0) exp{−W(k)}
∑

η

{ 〈µ′|ε′ · J(−q′)|η〉〈η|ε · J(q)|µ〉
(Eµ + E − Eη + iγη/2)

}
R0

.

(2.2)

In this expression,µ andµ′ label the initial and final states of the atom, respectively, and
η labels the intermediate states. The primary x-rays have an energyE = h̄cq = (2πh̄c/λ),
ε′ andq′ are the polarization vector and wave vector of the secondary x-rays, andk = q−q′.
The Debye–Waller factor exp{−W(k)} might depend on the position of an atom, and for
this reason in (2.2) it is included in the sum over the position vectors{R0}.

By setting aside the dependence ofEη on the quantum numbers for the subset of
intermediate states over which we can perform the summation of the product of matrix
elements in (2.2), we arrive at ouridealized resonant scattering length:

f (µ; µ′) = −
(

2πe

λ

)2(
1′

1

)
{E − 1 + i0/2}−1

×
∑
R0

exp(ik · R0) exp{−W(k)}Z(µ; µ′: R0). (2.3)

Here, it is assumed thatE is tuned close to1, which now is a mean energy for the separation
in energy between the initial state and the subset of intermediate states. The corresponding
energy for the intermediate states and the final state is1′. The energy0 is the total decay
width for the subset of intermediate states. Lastly,Z(µ; µ′: R0) is formed from the product
of polarization vectors and matrix elements in (2.2). Its dependence on the position of
the atom, admittedly not always explicitly displayed in subsequent workings, arises from
the dependence of the atomic states on chemical and magnetic order in the sample. An
expression forZ(µ; µ′) appropriate for quadrupole-allowed absorption events is given in
the following section.

3. Matrix elements

The absorption event in the resonant scattering process involves the transfer of a hole from
the valence shell, with angular momentuml, to a core state with angular momentuml̄ 6= l

(subsequent results are not valid forl̄ = l). The initial and final states of the atom both
belong to the valence shellln, wheren is the number of electrons.

In the idealized scattering length, the matrix elementZ(µ; µ′) is built from the following
product of one-particle matrix elements:∑

J̄ M̄

〈lJM|ε′ · J(−q′)|l̄J̄ M̄〉〈l̄J̄ M̄|ε · J(q)|lJ ′M ′〉 (3.1)

and for the current operator we take the first term in (2.1), which is a sum of electric dipole
and quadrupole operators. Because the dipole and quadrupole operators connect the valence
shell to different core states, there are no cross terms between matrix elements of these two
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operators in (3.1) and the latter, therefore, is the sum of a pure dipole contribution and a
pure quadrupole contribution.

The sum in (3.1) overJ̄ and M̄ renders the product of matrix elements proportional
to a sum of spherical tensors. To these we can apply the methods for equivalent particles
developed by Racah and thereby extend the result of our calculation from one hole in a
valence shell to a number of holesnh > 1. The proper account of Fermi statistics applied
to a configuration ofnh equivalent holes is embedded in Racah’s unit-tensor operators. All
of the properties of unit-tensor operators, forjj -coupling and Russell–Saunders coupling,
needed in the present work are gathered together in L & B.

In the general case, the wave functions of the atomic states are linear combinations
of states labelled by the quantum numbersθJM, whereθ contains all quantum numbers,
over and aboveJ and M, needed for a unique classification of atomic states. Here, we
give the matrix elementZ(µ; µ′), which appears in the idealized scattering length, for the
statesµ = θJM andµ′ = θJ ′M ′. We have achieved a relatively compact expression for
the quadrupole matrix element through use of a spherical tensorH (K) that contains the
polarization vectorsε and ε′ and the information on the directions of propagation of the
primary and secondary beams. It is to be noted that, in the dipole matrix element, treated
by L & B, there is no information on the directions of propagation of the x-ray beams. In
consequence, the analogue in the dipole matrix element ofH (K) is a much simpler quantity
(L & B denote it by X (K)). The definition and properties ofH (K) are the subject of an
appendix. The properties of the atom under investigation appear inZ(µ; µ′) through a
tensor operatorT K

m0
, whose properties are thoroughly discussed by L & B. For the dipole

matrix element 06 K 6 2, whereas in the quadrupole matrix element we find that the rank
extends up toK = 4.

It is convenient to lump together several factors that are common to each tensor. Let

8 = 1
6(q ′/q){q〈l|R2|l̄〉(l||C(2)||l̄)}2 (3.2)

where〈l|R2|l̄〉 is the matrix element ofR2 taken between the valence and core states, and
(l||C(2)||l̄) is the reduced matrix element of the normalized spherical harmonic of rank two.
We find, for l̄ = l − 2,

(l||C(2)||l̄)2 =
{

3l(l − 1)

2(2l − 1)

}
. (3.3)

Our result for the quadrupole matrix element is

Z(µ; µ′) = 8
∑
K

(−1)K
√

(2K + 1)

{
2
l

K

l̄

2
l

} ∑
m0

〈θJM|T K
m0

|θ ′J ′M ′〉H(K)
−m0

(−1)m0. (3.4)

A triangle condition in the 6j -symbol limits the integerK to the range 06 K 6 4. The
integerm0 ranges betweenK and−K. We draw attention to the form of the terms in the
sum overm0; this sum has the structure of the standard definition of the scalar product of
two tensors, and forK = 1 it is identical to the conventional scalar product of two vectors.

The matrix element ofT K
m0

satisfies the Wigner–Eckart theorem, namely,

〈θJM|T K
m0

|θ ′J ′M ′〉 = (−1)J−M

(
J

−M

K

m0

J ′

M ′

)
(θJ ||T (K)||θ ′J ′). (3.5)

L & B provide the reduced matrix element in (3.5) forK = 0, 1 (see, also, section 4) and
2 in both thejj -coupling and Russell–Saunders coupling schemes. Here, table 1 lists for
K = 3 andK = 4 values of the reduced matrix element of the unit-tensor operatorV (K)

in the two coupling schemes for states of fn, appropriate to the study of rare-earth atoms.
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Table 1. (a) Thejj -coupling scheme. The reduced matrix elements (νJ ||V (K)||νJ ) for K = 3
andK = 4, and f electrons in configurations determined by Hund’s rules. For the states f1–f 6

the total angular momentumj = 5/2 and for f7–f 13 it has the valuej = 7/2. Values of the
reduced matrix element forK = 0, 1 and 2 are reported by L & B. As an example of how to
read entries in the table consider f11; for this electron shellj = 7/2, the number of electrons
in the shelln = 5, and the values of reduced matrix elements are appropriate for the number
of holesnh = 2j + 1 − n = 3. NB The signs of the matrix elements forK = even integer
depend on whether one is counting electrons or holes, and values for the latter are given in
tables 1(a) and 1(b). (b) The Russell–Saunders coupling scheme. The value of the reduced
matrix elements ofV (3) andV (4) for the ground-state configuration of tripositive lanthanides
derived from Hund’s rules, as a function of the number of holes. Results are based on the tables
prepared by Nielson and Koster (1963), which cover the pn, dn and fn shells.

(a) (νJ ||V (3)||νJ ) (νJ ||V (4)||νJ )

f 1
√

7 −3

f 2
√

( 11
14) 3

7

√
( 143

2 )

f 3
√

( 143
21 ) 0

f 4
√

( 11
14) 3

7

√
( 143

2 )

f 5
√

7 3

f 6 0 0

f 7
√

7 −3

f 8 1
11

√
( 182

3 ) 1
11

√
(442)

f 9
√

( 3230
1001)

9
7

√
( 646

143)

f 10
√

( 646
77 ) 0

f 11
√

( 3230
1001)

9
7

√
( 646

143)

f 12 1
11

√
( 182

3 ) − 1
11

√
(442)

f 13
√

7 3

(b) Ground state nh (θ ||V (3)||θ) (θ ||V (4)||θ)

2F 1
√

7 3

3H 2 0 −2
√

( 13
7 )

4I 3
√

( 182
33 ) − 1

11

√
(442)

5I 4
√

( 182
33 ) 1

11

√
(442)

6H 5 0 2
√

( 13
7 )

7F 6
√

7 −3

The reduced matrix elements(θJ ||T (3)||θJ ) are listed in table 2 for values ofθJ chosen
according to Hund’s rules for the ground state of fn in the coupling scheme of Russell and
Saunders. It is interesting to note that(θJ ||T (3)||θJ ) is zero forn = 2, 5, 9 and 12.

For the simple case of Yb3+ (J = 7/2), with one hole in the 4f valence shell, our
idealized scattering length gives the complete picture of the resonant process—the reason
being that there is only one value of̄J , namelyJ̄ = 3/2 (5/2) for a quadrupole (dipole)
absorption event.
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Table 2. Values of the reduced matrix elements (θJ ||T (3)||θJ ) for the electron configurations
f 1 through to f13. The quantum numbersθJ = νSLJ are chosen according to Hund’s rules for
the ground-state configurations in the coupling scheme of Russell and Saunders.

(θJ ||T (3)||θJ )

f 1 2F5/2
1
7

√
30

f 2 3H4 0

f 3 4I9/2 − 28
11

√
( 10

143)

f 4 5I4 − 28
11

√
( 3

55)

f 5 6H5/2 0

f 8 7F6

√
( 26

33)

f 9 6H15/2 0

f 10 5I8 − 1
14

√
( 323

2 )

f 11 4I15/2 − 2
7

√
( 646

65 )

f 12 3H6 0

f 13 2F7/2
2
7

√
11

If the wave functions for the initial and final states of the atom are drawn from a single
J -manifold it might be useful to employ operator equivalents. To this end one rewrites the
matrix element (3.5) as

〈θJM|T K
m0

|θJM ′〉 = 〈JM|I (K)
m0

|JM ′〉(θJ ||T (K)||θJ ) (3.6)

where the tensorI (K) is defined to have a reduced matrix element equal to one. A
consequence of this notation is that the mean value ofZ, required for both the attenuation
coefficient and the scattering length for Bragg diffraction, is a weighted sum of mean values
of I (K), in a scalar product withH (K). However, this appealing result does not hold in the
general case, where the initial and final states of the atom contain contributions from more
than oneJ -manifold. Moreover, the use of operator equivalents does not add too much in
the way of physical insight for contributions to〈Z〉 coming from the terms withK > 3,
simply because the operator equivalents for high-order tensors are complicated objects. By
way of an example considerK = 3 andm0 = 0, for which we have the result

〈JM|I (3)

0 |JM〉 = (−1)J−M

(
J

−M

3
0

J

M

)
= M{5M2 + 1 − 3J (J + 1)}

{(J − 1)(2J − 1)(J + 2)(2J + 3)}1/2(J ||J ||J )
. (3.7)

This result suggests the use of an operator equivalent proportional to an octupole moment
operator:

Jc{5J 2
c + 1 − 3J (J + 1)} = 5

3Jc{3J 2
c − J (J + 1)} + 1

3Jc{3 − 4J (J + 1)} (3.8)

in which the second form is a sum ofJc and the product of this operator with the diagonal
element of the quadrupole operator.

Expressions in terms of the idealized scattering length for the attenuation coefficient and
cross-sections, for elastic and inelastic scattering, are given by L & B. These expressions
remain valid when the idealized scattering length is taken to be the sum of the dipole and
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quadrupole scattering lengths, i.e. whenZ(µ; µ′) in (2.3) is the sum of equation (3.10) in
L & B and (3.4) in the present paper. In the next section we consider the structure of the
quadrupole matrix element (3.4) for the special case of a saturated magnetic atom, which
can be a guide to properties observed of a sample held at a low temperature.

4. Saturated magnetic atoms

In some respects, the model of a saturated magnetic atom serves as a useful orientation
to the structure and relative magnitudes of the five contributions, labelled byK, to the
quadrupole matrix element (3.4). TakingM = M ′ = J in the latter we find

Z(µ; µ) = 8
∑
K

(−1)K
√

(2K + 1)

{
2
l

K

l̄

2
l

} (
J

−J

K

0
J

J

)
(θJ ||T (K)||θJ )H

(K)

0 . (4.1)

Values ofH(K)

0 are provided in an appendix.
In the remainder of this section we individually consider the five contributions to (4.1).

(i) K = 0. From the result

(θJ ||T (0)||θ ′J ′) = δθ,θ ′δJ,J ′ nh

(
2J + 1

2l + 1

)1/2

we readily find the first contribution to the quadrupole matrix element of a saturated atom:

8

(
1

5

)1/2
nh

(2l + 1)
H

(0)

0 . (4.2)

(ii) K = 1. We make use of the results{
2
l

1
l − 2

2
l

}
= −

(
2

15

)1/2
(l + 1)

(l||l||l)(
J

−J

1
0

J

J

)
= J

(J ||J ||J )

and, for the particular case whereJ = J ′,

(θJ ||T (1)||θJ ) = (J ||J ||J )

(l||l||l) (2 − g)

whereg is the Land́e factor. Assembling the results, theK = 1 contribution toZ(µ; µ) is

8

(
2

5

)1/2 1

l(2l + 1)
(2 − g)JH

(1)

0 . (4.3)

(iii) K = 2. Here{
2
l

2
l − 2

2
l

}
= (l + 1)

(l||l||l)
{

2(2l + 3)

35(2l − 1)

}1/2

and (
J

−J

2
0

J

J

)
= J

(J ||J ||J )

{
(2J − 1)

(2J + 3)

}1/2

.

(iv) K = 3. Here{
2
l

3
l − 2

2
l

}
= − (l + 1)

(l||l||l)
{

(l + 2)(2l + 3)

70(l − 1)(2l − 1)

}1/2
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and, from (3.7), say,(
J

−J

3
0

J

J

)
= J

(J ||J ||J )

{
(J − 1)(2J − 1)

(J + 2)(2J + 3)

}1/2

.

(v) K = 4. Here{
2
l

4
l − 2

2
l

}
= (l + 1)

(l||l||l)
{

(l + 2)(2l + 3)(2l + 5)

630(l − 1)(2l − 1)(2l − 3)

}1/2

and (
J

−J

4
0

J

J

)
= J

(J ||J ||J )

{
(J − 1)(2J − 1)(2J − 3)

(J + 2)(2J + 3)(2J + 5)

}1/2

.

The reduced matrix elements(θJ ||T (K)||θJ ) to go with the foregoing expressions for
K = 2, 3 and 4 are obtained, for eitherjj -coupling or Russell–Saunders coupling schemes,
from tables in L & B and this paper.

5. Dichroism

In our theoretical framework for the attenuation coefficient,γ , one finds thatγ is
proportional to the mean value ofZ evaluated for a forward-scattering geometry (q = q′) and
averaged with respect to the state of polarization in the primary beam of x-rays. Following
L & B, we denote this special value ofZ by 〈Z〉0. The attenuation coefficient is proportional
to the density of particles in the foil,n0, and in the limit0 → 0

γ = 2πλn0

(
e1

h̄c

)2

δ(E − 1)〈Z〉0. (5.1)

If γ is integrated with respect toE over an interval which includes the subset of intermediate
states, whose average energy is defined by1, our theoretical framework provides an exact
interpretation, within the scope of the atomic model.

Table 3. Components of the spherical tensorH(K) evaluated for the forward-scattering geometry
(k = 0) and averaged with respect to states of polarization in the primary beam of x-rays,
described by a Stokes vectorP = (0, P2, P3) and defined in agreement with Lovesey and
Collins (1996). Cartesian components of the unit vectorq̂ are labelled(a, b, c), and this set
of axes and the set(x, y, z) are related by Euler anglesα, β and γ defined in the same
way as in L & B and Judd (1975); see tables 3 and 4 in L & B. In the following entries,
||ε′

cεc|| = 1
2{(1 + P3) cos2 β + (1 − P3) cos2 α sin2 β}. For β = 0 the axesz and c coincide,

and for α = β = π/2 the axis of quantization (thec-axis) is aligned with the direction of
propagation of the beam of x-rays. The quantityP2 is the mean helicity in the primary beam.

||H(0)
0 || = 1

2( 1
5)1/2

||H(1)|| = − 1
2( 1

10)1/2P2q̂

||H(2)
0 || = 1

2( 1
14)1/2{2 − 3q̂2

c − 3||ε′
cεc||}

||H(3)
0 || = 1

2( 1
10)1/2P2(5q̂2

c − 3)q̂c

||H(3)
±1 || = 1

4( 3
5)1/2P2(5q̂2

c − 1)q̂±1

||H(3)
±2 || = 1

2(3)1/2P2q̂cq̂
2
±1

||H(3)
±3 || = 1

2P2q̂
3
±1

||H(4)
0 || = 1

2( 1
70)1/2{5(7q̂2

c − 1)||ε′
cεc|| + 1 − 5q̂2

c }
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For quadrupole-allowed absorption events the mean value ofZ, required in (5.1), is
calculated using the matrix element (3.4). In the general case,〈Z〉 is the linear combination
of matrix elements with weights determined by the chemical and physical properties of
the target foil. Regarding the dependence of〈Z〉0 on the states of polarization in the
primary beam—and it is this dependence which creates a dichroic effect—it is necessary to
examine the values ofH (K) calculated fork = 0 and averaged with respect to the states of
polarization. If the symmetry of the magnetic state of the atom is cylindrical, or higher, one
only needs the diagonal component ofH (K). The appropriate values are listed in table 3,
together with all the components, ofH (1) andH (3), needed to discuss the circular dichroic
signal for an arbitrary magnetic symmetry.

The circular dichroic signal is the difference between two values ofγ in which the
Stokes parameterP2 is assigned values of equal magnitude and opposite sign. Note thatP2

is the mean helicity of the x-ray beam. Let us define a signal by

1Z = 〈Z(P2)〉0 − 〈Z(−P2)〉0. (5.2)

Empirical data for the signal have been obtained at the dysprosium L3 edge by Langet al
(1995), and at the L3 edge of Yb in YbFe2 by Giorgettiet al (1995).

Contributions to〈Z〉0 with K = 0, 2 and 4 are independent ofP2 and cancel out in the
dichroic signal (5.2). Thus,1Z is proportional to the sum of the contributions to〈Z〉0 with
ranksK = 1 andK = 3. Referring to the entries in table 3, the components of||H (1)|| and
||H (3)|| are proportional toP2. For a given atomic wavefunction, we provide the reader
with all the necessary information to calculate the dichroic signal.

The relatively simple structure of the reduced matrix element ofT (1) enables us to make
progress with the physical interpretation of the rank-one contribution to〈Z〉0. Regrettably,
and predictably, very little light can be shed on the physical significance of the rank-three
contribution, although the reader might find interesting the octupole operator equivalent for
the diagonal element forK = 3 given in (3.8).

Let us examine the result for the dichroic signal appropriate to the special case where
(i) operator equivalents can be used because the atomic wavefunction is created from one
J -manifold and (ii) the rank-three contribution to〈Z〉0 can be safely neglected (with regard
to this aspect it is noted that the rank-three contribution is zero for pure Russell–Saunders
coupling and a number of electrons in the valence shell=2, 5, 9 or 12). For this special
case, the circular dichroic signal is (K = 1)

1Z = −8{P2/5l(2l + 1)}〈L〉 · q̂ (5.3)

and8 is obtained from (3.2) withq = q ′. The structure of the result (5.3) is very similar
to the dichroic signal with dipole-allowed events; the appropriate result for the latter case
is (4.5) in L & B. If we normalize (5.3) by the isotopic contribution to〈Z〉0, generated by
the rank-zero contribution

38{nh/10(2l + 1)}
the result is

− 2
3P2{〈L〉 · q̂/lnh}.

This value is the same as the corresponding quantity obtained for dipole-allowed events
apart from the factor 2/3, and most importantly, here we have set aside for the moment the
rank-three contribution to the quadrupole matrix element.

To assess the relative sizes of the rank-one and rank-three contributions to the dichroic
signal one can appeal to the results in section 4 for a saturated magnetic atom. These
results lead to the conclusion that, at a low temperature, the key quantities determining the



11018 S W Lovesey

relative sizes of the two contributions are the reduced matrix elements (θJ ||T (1)||θJ ) and
(θJ ||T (3)||θJ ) and not the 3j - and 6j -symbols for which we have given analytic results.
The rank-one reduced matrix element is found in section 4, and table 2 contains a listing
of the rank-three reduced matrix element evaluated for the ground states of fn determined
by Hund’s rules.

We conclude by giving the contribution to the dichroic signal made by the rank-three
tensor, i.e. the contribution which when added to (5.3) leads to the total value of the circular
dichroic signal. The following contribution is the complete expression for the rank-three
contribution to1Z in the special case of an atom with cylindrical symmetry, for which
terms in (3.4) withm0 6= 0 are zero (no such limitation applies in (5.3)). Assuming that it
is valid to use the operator equivalent (3.8) we find (K = 3)

1Z = 1

10
8P2

(l + 1)

(l||l||l)
{

(l + 2)(2l + 3)

(l − 1)(2l − 1)

}1/2

× 〈Jc{5J 2
c + 1 − 3J (J + 1)}〉

(J ||J ||J ){(J − 1)(2J − 1)(J + 2)(2J + 3)}1/2

× (θJ ||T (3)||θJ )(5q̂2
c − 3)q̂c. (5.4)

Here,(l||l||l) =
√

{l(l + 1)(2l + 1)}, and a similar expression holds for the reduced matrix
element of the total angular momentum.

Evaluated for the configuration f13 2F7/2 the sum of (5.3) and (5.4) is (K = 1 and
K = 3)

−(8P2/735)q̂c{6〈Jc〉 + 〈 37
4 Jc − J 3

c 〉(5q̂2
c − 3)} (5.5)

with

8 = 3
10(q〈l|R2|l − 2〉)2.

The quantity in (5.5) within{ } is in agreement with the corresponding quantity used by
Giorgettiet al (1995) in their interpretation of empirical data collected on Yb3+. Of course,
one gets the same results for (5.5) using thejj -coupling and Russell–Saunders coupling
schemes.

6. Comments

We have obtained an idealized x-ray resonant scattering length for quadrupole-allowed
absorption events. The formulation follows work by Lovesey and Balcar (1996) for dipole-
allowed events. The idealized scattering length provides a description of processes which
involve valence electrons in a shellln. Where necessary, tables of relevant Racah unit-
tensor operators forl = 3 are given. Thus, the reader can readily apply the formalism to
an atomic model of any rare-earth material of interest.

Armed with the resonant scattering length, it is straightforward to calculate the
attenuation coefficient and the cross-sections for scattering. States of polarization in the
primary, and secondary, beams of x-rays are conveniently handled in terms of a Stokes
vector (Lovesey and Collins 1996).
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Appendix

The spherical tensorH (K) in the quadrupole matrix element (3.4) is constructed from
spherical tensors of rank two, denoted byh(Q), that are formed out of spherical components
of the polarization vector and wave vector. Following the standard convention for creating
a spherical tensor by coupling, via a Clebsch–Gordan coefficient, two spherical components
of equal rank (Edmonds 1960),

h(Q) =
∑
νν ′

ενq̂ν ′(1ν1ν ′|2Q) (A.1)

whereεν andq̂ν ′ are spherical components of the unit vectorsε andq̂ = (q/q). We choose
to haveε purely real. Table 2 in L & B contains the definitions of the spherical components
in terms of Cartesian components, and all of the components ofh(Q). Recall thatε andq
are orthogonal vectors. The spherical tensor constructed fromε′ and q̂′, that relates to the
secondary beam of x-rays, is denoted byh′(Q′).

With the foregoing notation, the definition of the components ofH (K) is

H(K)
m0

=
∑
QQ′

h′(Q′)h(Q)(2Q2Q′|Km0). (A.2)

The order ofh′ andh is significant forK = odd integer. The reason for this is the behaviour
of the Clebsch–Gordan coefficient with respect to an interchange ofQ andQ′, namely,

(2Q2Q′|Km0) = (−1)K(2Q′2Q|Km0).

Hence, two tensors based on (A.2) and formed out of the primary and secondary variables
placed in opposite orders are related by a factor (−1)K . This result permits us to anticipate
the finding that odd-order tensors are linear in components ofε′ × ε and q̂′ × q̂, and
even-order tensors are unchanged by an interchange of primed and unprimed variables.

Here, and in table 2 of L & B, the Cartesian components of a vector are labelled(a, b, c).
(The labels(x, y, z) are reserved for a set of Cartesian axes that are used to describe the
geometry of the experimental arrangement.) ForK = 0 there is only one component in
H (K), and we find

H
(0)

0 = 1
2( 1

5)1/2{(ε′ · ε)(q̂′ · q̂) + ε′
cq̂c(ε · q̂′) + εcq̂

′
c(ε

′ · q̂) − (ε′ × ε)c(q̂
′ × q̂)c}. (A.3)

For some purposes it is useful to write the sum of the second and third terms in the alternative
form

{(ε′ × ε) × (q̂ ′
cq̂ − q̂cq̂

′)}c.
Furthermore,

H
(2)

0 = 1
2( 1

14)
1/2{2(ε′ · ε)(q̂′ · q̂) − 3ε′

cεc(q̂
′ · q̂) − 3(ε′ · ε)q̂ ′

cq̂c − ε′
cq̂c(ε · q̂′)

− εcq̂
′
c(ε

′ · q̂) − 2(ε′ × ε)c(q̂
′ × q̂)c} (A.4)

and

H
(4)

0 = 1
2( 1

70)
1/2{(ε′ · ε)(q̂′ · q̂) + 35ε′

cεcq̂
′
cq̂c − 5ε′

cεc(q̂
′ · q̂) − 5(ε′ · ε)q̂ ′

cq̂c

− 4ε′
cq̂c(ε · q̂′) − 4εcq̂

′
c(ε

′ · q̂) − (ε′ × ε)c(q̂
′ × q̂)c}. (A.5)
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In the calculation of the attenuation coefficient we needH (K) evaluated for a forward-
scattering geometry and averaged with respect to states of polarization in the primary beam
of x-rays. The average of a quantity with respect to states of polarization is denoted by
placing the quantity between double vertical lines. Turning to the result (A.3) forH

(0)

0 and
settingq = q′ only the first term on the right-hand side does not vanish. With regard to the
average over states of polarization we have

||(ε′ · ε)|| = 1

so for q = q′

||H(0)

0 || = 1
2( 1

5)1/2.

This result and other results for||H (K)|| required in the calculation of the attenuation
coefficient are gathered together in table 3. The orientational dependences of||H(1)

0 || and
||H(3)

0 || agree with the findings of Carraet al (1993) and Giorgettiet al (1995).
The cross-sections for scattering are proportional to the square of the scattering length

averaged with respect to states of polarization in the primary beam. In the event that the
scattering length is represented by the term inZ(µ; µ′) with K = 0, the cross-sections are
proportional to

||H(0)

0 H
(0)

0 ||
and all of the terms in this expression that occur on substituting (A.3) forH

(0)

0 are given
by Lovesey and Collins (1996). (The structure of the cross-section for Bragg diffraction is
explored by Hill and McMorrow (1996).)

In the remaining discussion ofH (K) we limit ourselves toH (1) andH (3). The mean
value of Z contains these terms weighted by thermodynamic quantities that vanish if the
magnetic state is not ordered. The magnetic quantities that weightH (2) andH (4) can be
non-zero for a paramagnetic sample.

Looking at (A.3)–(A.5) it might be correctly guessed that the components ofH (1)

and H (3) are somewhat unwieldy. To make the expressions as attractive to the eye as
seems possible we use a series of functionsR(p), with p = 1, 2, . . . , 10, of the Cartesian
components ofε, q̂, ε′ and q̂′. It also convenient to use the vectors

ξ = (q̂′ × q̂) and ϕ = (ε′ × ε).

We find thatH(1)

0 andH
(3)

0 can be expressed as linear combinations of

R(1) = {h′(1)h(−1) − h′(−1)h(1)} = i

2
{ε′

cεcξc + ϕcq̂
′
cq̂c − 1

2
[ϕa(q̂

′
aq̂c + q̂ ′

cq̂a)

+ ϕb(q̂
′
bq̂c + q̂ ′

cq̂b) + (ε′
bεc + ε′

cεb)ξb + (ε′
aεc + ε′

cεa)ξa]}
and

R(2) = {h′(−2)h(2) − h′(2)h(−2)} = i

2
{(ε′ · ε − ε′

cεc)ξc + ϕc(q̂
′ · q̂ − q̂ ′

cq̂c)}.
The results are

H
(1)

0 = ( 1
10)

1/2{R(1) + 2R(2)}
and

H
(3)

0 = ( 1
10)

1/2{−2R(1) + R(2)}.
These are the only values ofH (1) andH (3) that are needed to describe the properties of a
magnetic atom with at least cylindrical symmetry with respect to thec-axis.
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Defining

R(3) = {h′(1)h(0) − h′(0)h(1) + h′(0)h(−1) − h′(−1)h(0)} = ( 3
2)1/2{ϕbq̂

′
cq̂c + ε′

cεcξb}
and

R(4) = {h′(−1)h(2) − h′(2)h(−1) + h′(−2)h(1) − h′(1)h(−2)}
= 1

2{ϕb(q̂
′ · q̂ − q̂ ′

cq̂c) + (ε′ · ε − ε′
cεc)ξb − (ε′

bεc + ε′
cεb)ξc − ϕc(q̂

′
bq̂c + q̂ ′

cq̂b)}
one has

H
(1)

+1 + H
(1)

−1 = ( 3
10)

1/2R(3) + ( 1
5)1/2R(4)

and

H
(3)

+1 + H
(3)

−1 = −( 1
5)1/2R(3) + ( 3

10)
1/2R(4).

And, with

R(5) = {h′(1)h(0) − h′(0)h(1) + h′(−1)h(0) − h′(0)h(−1)}

= − i

(
3

2

)1/2

{ε′
cεcξa + ϕaq̂

′
cq̂c}

and

R(6) = {h′(−1)h(2) − h′(2)h(−1) − h′(−2)h(1) + h′(1)h(−2)}
= i

2
{(ε′

aεc + ε′
cεa)ξc − ϕa(q̂

′ · q̂ − q̂ ′
cq̂c)

− (ε′ · ε − ε′
cεc)ξa + ϕc(q̂

′
aq̂c + q̂ ′

cq̂a)}
we find

H
(1)

+1 − H
(1)

−1 = ( 3
10)

1/2R(5) + ( 1
5)1/2R(6)

and

H
(3)

+1 − H
(3)

−1 = −( 1
5)1/2R(5) + ( 3

10)
1/2R(6).

For the remaining components ofH (3) we choose to write

H
(3)

+2 + H
(3)

−2 = i

4
(3)1/2R(7)

H
(3)

+2 − H
(3)

−2 = 1

4
(3)1/2R(8)

H
(3)

+3 + H
(3)

−3 =
(

1

2

)3/2

R(9)

and

H
(3)

+3 − H
(3)

−3 = i

(
1

2

)3/2

R(10).

We find

R(7) = −(ε′
aεc + ε′

cεa)ξa + (ε′
bεc + ε′

cεb)ξb + ϕb(q̂
′
bq̂c + q̂ ′

cq̂b) − ϕa(q̂
′
aq̂c + q̂ ′

cq̂a)

R(8) = ϕb(q̂
′
aq̂c + q̂ ′

cq̂a) + ϕa(q̂
′
bq̂c + q̂ ′

cq̂b) + (ε′
aεc + ε′

cεa)ξb + (ε′
bεc + ε′

cεb)ξa

R(9) = ϕb(q̂
′
bq̂b − q̂ ′

aq̂a) − ϕa(q̂
′
aq̂b + q̂ ′

bq̂a) + (ε′
bεb − ε′

aεa)ξb − (ε′
aεb + ε′

bεa)ξa

and, finally,

R(10) = ϕa(q̂
′
aq̂a − q̂ ′

bq̂b) − ϕb(q̂
′
aq̂b + q̂ ′

bq̂a) + (ε′
aεa − ε′

bεb)ξa − (ε′
aεb + ε′

bεa)ξb.
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